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Abstract: Tracking is one of the most time consuming aspects of event reconstruction at

the Large Hadron Collider (LHC) and its high-luminosity upgrade (HL-LHC). Innovative

detector technologies extend tracking to four-dimensions by including timing in the pattern

recognition and parameter estimation. However, present and future hardware already have

additional information that is largely unused by existing track seeding algorithms. The

shape of pixel-clusters provides an additional dimension for track seeding that can signifi-

cantly reduce the combinatorial challenge of track finding. We use neural networks to show

that cluster shapes can reduce significantly the rate of fake combinatorical backgrounds

while preserving a high efficiency. We demonstrate this using the information in cluster

singlets, doublets and triplets. Numerical results are presented with simulations from the

TrackML challenge.
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1 Introduction

Analyzing data from the Large Hadron Collider (LHC) present a hyper challenge. A

given collision event may result in hundreds of outgoing particles, each with many features

(momentum, electric charge, etc.). This hypervariate phase space is then observed by

complex multi-channel detectors that are essentially hyperspectral cameras. The LHC

detectors have millions of readout channels and dimensionality reduction is essential for

data analysis. One natural and nearly lossless reduction is the reconstruction of charged

particle trajectories (‘tracks’). The innermost layers of the detectors at the LHC are

constructed to register the passage of charged particles without significantly altering the

particle energy or direction. In the ATLAS and CMS detectors, this is achieved using

silicon sensors that are finely segmented in one or two directions and are called strips

and pixels, respectively. We will focus on pixels, although our methodology applies more

generally.

Typically, the first step in a tracking algorithm is the construction of seeds, which are

sets of three or more hit pixel clusters that can be used to fit charged-particle trajectories

(see e.g. Ref. [1, 2]). If there are O(10) detector layers, a given event with O(103) particles

would have O(104) pixel clusters and therefore about O(1010) possible seeds. Since the

number of seeds per real particle is O(1), the initial purity of seeds can be as low as

O(10−10). This is a significant challenge for pattern recognition at the LHC and its high-

luminosity upgrade, the HL-LHC, where the number of particles per event will grow even

higher.

The geometric arrangement of seeds in space can be used to eliminate those that are

unlikely the result of a real particle. However, given the significant challenge presented

by the large number of seeds, it is important to examine other non-geometric solutions.

One solution is to augment tracking detectors with precise timing information to reject

combinations of clusters from different collisions [3–5]. This is especially effective at high
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luminosity where a given proton-proton bunch crossing may result in O(100) individual

proton-proton collisions with a non-negligible spread in time. While timing is a promising

avenue, the existing detectors are not fast enough for this information to be useful. Other

hardware modifications have been studied, such as linking two nearby spatial hits [6], but

this is also not available in existing detectors and is currently not possible for the innermost

detector layers due to bandwidth limitations.

Other available measurements are the energy deposition and the structure of pixel

clusters. In this paper we analyze the impact on seed purity of using cluster shape in-

formation. The pixelation in tracking detectors is sufficiently fine that multiple pixels are

often activated from a single charged particle. A hit is a pixel that has registered a sig-

nal above threshold and a collection of nearest neighbor hits are grouped together into a

cluster. The shape of a pixel cluster contains useful information about the direction of the

charged particle and offers a complementary source of information to the spatial location of

the cluster centroid that is currently used for seed selection1. This is illustrated schemati-

cally in Fig. 1. Thin layers of semiconductor provide the sensor material and with a strong

applied electric field, ionized electrons and holes can be collected and registered with local

readout electronics. In some cases, these pixels may record a measurement of the deposited

energy. This information has a poor intrinsic resolution from straggling effects [9–11] and

is typically digitized with a small number of bits. While this digitized information has

many useful purposes (see e.g. Ref. [12]), the binary hit map carries the most important

information and is the dominant source of additional information considered in this paper.

We propose to use neural networks to optimally combine local information about pixel

cluster shapes with global geometric information to improve seed selection. Neural net-

works have been recently studied for cluster seeding [13–15], but there has not yet been

a systematic study of how much information local cluster structure adds to seed selection

performance. We compare classifiers trained to distinguish true seeds from noise seeds

using local and/or global information. Furthermore, we study neural networks applied to

1-, 2-, and 3-cluster seeds. An n-cluster seed is a set of n clusters that are used for con-

structing track candidates. Even with a single cluster, one can use the information inside

a pixel cluster to determine information about the underlying charged particle trajectory.

This paper is organized as follows. Section 2 introduces the TrackML [16, 17] dataset,

which we employ as a surrogate for actual LHC data, and defines the variables used in the

analyses. The results for one-, two-, and three-layer pixel clusters are presented in Sec. 3.

The paper ends with conclusions and outlook in Sec. 4.

2 Simulation

The TrackML dataset uses top quark pair production from proton-proton collisions as a

representative process for track reconstruction at the LHC. In order to emulate a realistic

occupancy for the high-luminosity LHC, a Poission random number (with mean 200) of

minimum bias events are overlaid on top of the tt̄ collisions. This leads to an average

1Cluster shapes have been proposed for applications beyond centroid estimation in the forward region [7,

8], but they can be useful more generally.
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Figure 1. A schematic diagram of a proton-proton collision producing a charged particle that

traverses layers of a pixelated tracking detector. In reality, a given collision would result in many

charged particles, but only one is indicated for illustration.

of about 10,000 particles/event. The hard-scatter and minimum bias events are both

simulated using Pythia [18, 19].

The TrackML detector is a set of concentric cylindrical layers of pixelated sensors (i.e.

pixel layers) complemented by a set of circular disks (i.e. strip layers) to ensure nearly 4π

coverage in solid angle. For the study presented in this paper, only the barrel pixel layers

are used. The pitch size of these pixel layers is 50 µm in the direction perpendicular to the

beam and 56.25 µm in the beam direction. The coordinates of clusters are determined as

the charged-weighted average over the constituent hit locations.

Collisions occur near the geometric center of the simulated detector with Gaussian

profiles that have mean zero and standard deviation 5.5 mm in the longitudinal direction

(global z) and 15 µm in the transverse directions (global x and y). The A Common

Tracking Software (Acts) toolkit [20] provides the simulation engine to propagate particles

through a detector similar to ATLAS [21] or CMS [22] at the LHC. Particle trajectories are

deterministic, except for multiple Coulomb scattering, ionizing energy loss, and radiation

energy loss as emulated by the Fast Track Simulation Package in Acts. Noise is simulated

by randomly adding additional hits (15% of total hits).

A subset of clusters from one event are shown in Fig. 2 which illustrates the cylindrical
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Figure 2. A sample of clusters in the inner most four barrel detector layers. The x-y view is on

the left and the y-z view is on the right.
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Figure 3. A representative example of pixel clusters from a single particle, in the x-y plane (left)

and the z-r plane (right).

nature of the inner barrel layers, and the clusters from a single particle are shown in Fig. 3.

Trajectories are approximately helical and manifest as arcs of circles in x-y and straight

lines in r-z. Due to the small beamspot in x-y, the path in x-y goes through the origin. In

contrast, there is a non-trivial spread in the beamspot in z; in the right plot of Fig. 3, the

trajectory does not visually go through the origin.

In addition to the global position of the hit, there are the local coordinates that describe

the location of the hit within a given module. These local coordinates are defined such that

the u, and v direction are along the active surface of the given module, with u perpendicular

to the beam direction, v along the beam direction, and w is the coordinate normal to the

surface (see Fig. 1). The module defines the location of the hit using a pixel matrix,

where the pixels in the u direction are said to be in channel zero (ch0), and those in the v

direction are said to be in channel one (ch1). The number of pixel hits in ch0 and ch1 are

denoted by nch0 and nch1 respectively. The cluster lengths in the u direction (∆u) and in

the v direction (∆v) are given by multiplying the pitch sizes of the cells by nch0 and nch1
respectively. Therefore, the cluster shape is defined by [∆u, ∆v, ∆w], where ∆w is the

width of the module.

In many instances, more than one pixel will have charge deposited within it. In order

to reconstruct the hit location, a weighted average of the charge deposited information is
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Figure 4. Example of transformation from local coordinates to global coordinates. Reproduced

from the TrackML challenge webpage [16].

used, i.e.:

~hlocal =
1∑
i qi

∑
i

qi ~pi, (2.1)

where the sum goes over all pixels with deposited charge above a threshold, qi is the charge

deposited, and ~pi = (ui, vi, wi) is the local position of the pixel in millimeters. After

reconstructing the local hit position information, the hit position is translated to global

coordinates within the detector. This is achieved through the use of a rotation matrix and

a translation vector:
~hglobal = Urot

~hlocal + ~xtrans, (2.2)

where both the translation vector, ~xtrans, and rotation matrix, Urot, are module dependent

as illustrated in Fig. 4. In what follows we make use of ~hlocal, ~hglobal and ~pi.

3 Results

The following section explores the information available from a single (Sec. 3.1), from a pair

(Sec. 3.2), and from a triplet (Sec. 3.3) of pixel cluster(s). To illustrate the potential gains

from local cluster shape information, we will use deep neural networks trained using three

feature sets. First, we will train neural networks to only consider the spatial information

contained in the global x,y,z coordinate per pixel cluster (based on the cluster centroid).

Next, we consider networks trained using only local information about the pixel cluster

shape. Finally, both sets of features are combined to demonstrate the optimal combination

of both local and global information. As will be shown below, the shape of the cluster

can help to narrow down the search region by providing pointing information on where

the next hit in the subsequent layer should be. The similarity of cluster shapes between
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layers when considering pairs or triplets can also reject incorrect pairings. By using this

information, the number of seeds that need to be considered can be reduced, improving

subsequent steps in the seeding algorithm.

All neural networks are multilayer perceptrons with fully connected layers using the

rectified linear unit (ReLU) activiation function between layers. These networks are opti-

mized by the gradient-based stochastic algorithm Adam [23].

3.1 Single clusters

For a single pixel cluster, the networks are trained to predict the direction of the particle in

the frame defined by the local detector unit. We found that choosing to use the momentum

defined in the module reference frame instead of attempting to predict the direction in a

globally defined coordinate system improves the accuracy of the network’s predictions. The

neural networks consist of five layers using [256, 128, 64, 32] units in the hidden layers. The

final output is a 3-vector prediction for the particle momentum, ~ppred, at the location of

the hit in the frame defined locally by the module. Here, it is safe to neglect the effect

of the magnetic field since we are looking at the inner most layers which are close enough

together that the impact of the magnetic field from one layer to the next does not modify

the momentum in a significant manner. The networks are trained with a cosine-proximity

loss function, which minimizes the angle, ∆θ, between the true momentum ~ptrue and the

predicted momentum ~ppred,

cos ∆θ =
~ppred · ~ptrue
|~ppred||~ptrue|

. (3.1)

Thus, the normalisation of the network’s output is unimportant. It would be interesting

to see if the network could be trained to predict the direction and magnitude of the mo-

mentum, but this is a more difficult task. Since the change in momentum is small between

consecutive hits in the inner layers this additional information could be used to further

reduce the combinatorics when constructing doublets.

The dimension of the input vector to the neural networks depends upon which set of

features are being considered. There are three inputs for the spatial information (x-y-z)

and eight inputs associated with the cluster shape. In reality, a cluster may have charge

deposits in more than 50 pixels, or as few as one. However, to encode the shape of the

cluster in fewer variables we first find the convex hull of the hits in the cluster using the

Graham scan algorithm [24]. We then define a bounding box around the convex hull by

identifying the two extremum pixels. The eight input variables for the cluster are then

given as the position of these two extremum pixels (four variables), the charge deposited

in these pixels (two variables), and the cluster shape (∆u, ∆v). Although this information

contains redundancy we found it was beneficial with respect to training.

After the training is complete, the networks are compared using three different metrics.

The first metric is to compare the cosine of the angle between the true direction of the

particle and the predicted direction from the network. Since we are only considering the

inner most layers for this network, the subsequent hit should be further from the collision

point than the initial. Therefore, if the network predicts the momentum to be towards

the center, we can flip the direction without introducing additional errors. The different
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Figure 5. The number of counts versus the cosine between the true direction and the predicted

direction for hits in the tracker, using spatial (green), shape (red), and combined (blue) information.

Furthermore, if the cluster shape is required to have a width in channel 0 greater than 1, the results

for the shape and combined are updated to the orange and gray lines respectively.

networks are compared in Fig. 5 for this metric. While the shape-only network has a

sharper peak at cos(∆θ) = 1 than the spatial-only network, the shape-only network has

a bump at cos(∆θ) ∈ [−0.25, 0.75] degrading the overall performance of the shape-only

network in comparison to the spatial-only network. Furthermore, by combining the spatial

and the shape information, there is a significant improvement in the ability to predict the

true direction of the particle. The most interesting aspect is related to clusters in which

the track does not fall within a single value of channel zero (row) on the detector (see

Fig. 1). In the case of only using shape information, when the cluster falls along a single

row, the network is unable to predict in which direction the hit went through the layer.

This introduces the bump in the prediction for the shape information in Fig. 5 due to the

degeneracy over possible angles consistent with the width and breadth of the cluster shape.

Giving the network access to the information about the global position of the hit allows it

to determine the most likely direction of the particle. This results in the improvement seen

in the combined prediction. However, if we remove the single row cluster shapes (which

make up approximately 30% of all hits), then the network’s performance is improved even

further as shown by the gray (combined) and orange (shape) curves.

The second metric is to consider the fraction of events for which the predicted direction

falls within a cone of a given angle from the true direction. The smaller the cone required

the better, since this would help to reduce the number of combinations to consider during

the seeding process. The results are shown in Fig. 6. Again, the shape-only network has

more predictions close to the true direction, but has a very long tail as compared to the

spatial information. By combining the two however, significant improvement is made by
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Figure 6. The fraction of events with a predicted direction less than ∆θ away from the true

direction. The results are shown using the spatial information only (green), the shape information

only (red), and the combined (blue). Furthermore, if the cluster shape is required to have a width

in channel 0 greater than 1, the results for the shape and combined are updated to the orange and

gray lines respectively.

both having approximately 50% of all predicted directions within 2° of the true direction,

but by also removing the long tail. In comparison, the spatial only does not reach a 50%

containment until almost 10° and the shape only does not reach 50% until about 5°. In the

case of removing single row cluster shapes, we can see that the network is able to predict

all of the hit directions to within 2° of the true direction.

The final metric is the comparison of the probability that the true hit is within a cone

of a given size compared to the fraction of all the hits in the event that lie inside the cone.

The angular opening of the cone parameterizes the curve defining this metric. The results

are shown in Fig. 7, which was made by considering 100 events each with about 1000 hits

in the innermost layer and looking only at the hits in the innermost layer to the next layer

out. The left plot shows the results if the outward direction of the hit from the interaction

point is not taken into account, while the right plot takes the direction into account. If

we take a working point with 95% probability of finding the true hit inside the cone and

considering that the hit has to be moving outwards, then we have approximately a 38.5%

of all hits within the cone for the combined network, which improves to 4.60% when only

cluster shapes with a channel 0 width greater than 1 are considered. The accuracy degrades

slightly when neglecting the outward direction to 41.1% and 9.4% respectively. The effect

of using wider clusters is only important in the region of high probability of finding the

hit within the cone. If instead of a 95% chance to find the hit we use a 50% chance, then

the fraction of hits within the cone is 0.13% and 0.1% for the combined and combined

with channel 0 greater than 1 respectively. If this network is used to produce a triplet

seed, we expect the reduction in possible seeds to scale as the fraction of hits in the cone
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Figure 7. The fraction of hits in the next layer that fall within a cone are shown against the

probability that the true hit is contained within that cone. This was obtained by averaging over all

track hits in layers 2 and 4 from 100 events. The curves are parameterized by the opening angle

of the cone. The results for spatial information only (green), shape information only (red), and

combined (blue/gray) are shown considering all hits (left) and taking into account that the hit must

be moving away from the collision point (right). The results shown here are for the innermost layer

to the next layer. Requiring that the width in channel 0 is greater than 1 moves the combined

curve to the gray curve shown, and moves the shape only to the orange curve.

squared. Table 1 shows the fraction of hits within the cone for all results at a 50% and

95% probability of finding the hit in the cone.

Fraction of hits in cone

Network 50% Prob. Working Point 95% Prob. Working Point

Spatial 0.07 0.75

Cluster 0.006 0.70

Combined 0.001 0.39

Cluster (nch0 > 1) 0.003 0.09

Combined (nch0 > 1) 0.001 0.05

Table 1. Efficiency and purity numbers at two possible working points, based on Figure 7.

We have not attempted to balance the trade-off between efficiency (ε) and purity to

find an optimal working point for the single cluster NN approach but instead conclude this

section with a few observations. One possibility could be to work at a lower efficiency value,

which results in a smaller number of background hits in the cone, but to apply the direction

prediction on consecutive layers and compare them. Possibly allowing working with lower

efficiency but taking into account both forward and backward predictions. Alternatively,

the single hit network could be used to predict the particle directions for all hits within

consecutive layers and compare these directions to find mutually consistent sets.

For hit patterns involving more than a single line of hit pixels the combined network

is remarkably adept at correctly predicting the particle’s true direction, which potentially

motivates training specialized networks for different classes of pixel clusters. One such

specialized network would be the Bayesian Neural Network [25], in which the network

would be trained to predict both the track direction and an uncertainty on that direction.
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Even for the single row hit patterns there is additional information, which we have not

utilised, in the fraction of charge deposited in each pixel. Finally, the output from this

single hit network can be fed to, or used in tandem with, another network to determine

which of the possible hits in the cone are true track partners of the original hit, this will

be addressed in the subsequent sections.

3.2 Cluster Doublets

Doublets are composed of two clusters coming from consecutive layers. Constructing dou-

blets is the first step towards reconstructing a track, which is a crucial step not only

in traditional track reconstruction algorithms [1] but also in deep learning based algo-

rithms [26–28]. We now discuss our doublet neural network, which was trained to separate

true doublets from fake doublets. The list of possible doublets may come from all possible

pairs of clusters in consecutive layers, or may be from the output of the direction predic-

tion discussed in the previous section. Doublets formed by clusters coming from the same

charged particle are true doublets; those formed otherwise are fake doublets. We define the

purity as the ratio of true doublets to total doublets in the given selection. Similarly, the

efficiency is defined as the ratio of the number of true doublets that pass selection require-

ments to the total number of true doublets input to the selection process. We demonstrate

that the neural network trained with the combined information of cluster spatial and shape

information results in a higher doublet purity for a given doublet efficiency. The reason

for this is that the cluster shape of two clusters coming from the same track tend to have

similar structures. As an illustration, Figure 8 and 9 show the cluster shapes of a pair of

clusters coming from the same track (left two panels) and a pair of clusters coming from

different tracks (right two panels) in two different kinematic regions.

The doublet neural network is composed of four layers of neurons with the sizes of [128,

64, 32, 1]. The outputs of the last neuron are transformed by a sigmoid function and are

used as the doublet scores: the network’s prediction for the probability that the doublet

is a true doublet. To balance the number of true and fake doublets in the training, true

doublets are constructed from 100 events and fake doublets are from a single event using

all possible combinations of the hits in the two innermost consecutive layers. The doublet

scores are quantitatively compared with the labeling by using the binary cross-entropy loss

function. The smaller the loss value is, the better the predictions agree with the ground

truths.

Table 2. Input variables for training the doublet neural network. The definition of the variables

can be found in the text.

Group Variables

spatial only ∆r, ∆φ, ∆φ/∆r, ∆z, z0, ∆η

shape only ∆η′, ∆φ′

The doublet neural network is trained separately with the same training events but

different sets of input variables as summarized in Table 2. ‘Spatial only’ variables are

derived from the cluster’s global position in a cylindrical coordinate system. ∆r, ∆φ, ∆z
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Figure 8. Cluster shape of two clusters coming from the same track (left two) and two clusters

coming from different tracks (right two) for two clusters forming a doublet with pT < 0.5 GeV and

|η| < 1 . Note that the origin (bottom left) of ch0 and ch1 has been shifted to the position where

the cluster is located, for clarity. The pixel intensity demonstrates the charge density deposited in

the pixel, but this information is not given to the NN.
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Figure 9. Cluster shape of two clusters coming from the same track (left two) and two clusters

coming from different tracks (right two) for two clusters forming a doublet with pT > 1 GeV

and 2.1 < |η| < 3 . Note that the origin (bottom left) of ch0 and ch1 has been shifted to the

position where the cluster is located, for clarity. The pixel intensity demonstrates the charge

density deposited in the pixel, but this information is not given to the NN.

are the differences of the two hits in r, φ and z, ∆η is the difference in pseudorapidity2 and

2Pseudorapidity η = − ln(tan (θ/2)), where θ is the polar angle relative to the beamline.
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z0 is the intercept of the line connecting the two hits at r = 0. ‘Shape only’ variables are

derived from the cluster shape described in Section 2. The length of the cluster is given

by L = (∆u2 + ∆v2 + ∆w2)1/2. We then use the rotation matrix in Eq. (2.2) to transform

the cluster shape to a coordinate system aligned with the global coordinates, in which the

shape is [∆u′, ∆v′, ∆w′]. In the new coordinate system, we introduce two new variables,

η′ and φ′, that are related to the fraction of the length of the cluster along the beam axis

and its orientation in the plane perpendicular to the beam, respectively:

η′ =
1

2
log

L−∆w′

L+ ∆w′
, φ′ = tan−1

∆v′

∆u′
. (3.2)

The quantities η′ and φ′ are calculated for each cluster and the differences between the two

clusters, ∆η′, ∆φ′, are used as inputs to the network. Redundant spatial information is

fed to the network to gain accuracy and convergence time.

The neural network based selections are compared with the cut-based selections3 from

Ref. [27], which have an efficiency and purity of 43% and 3%, respectively. This comparison

is shown in Figure 10. For a purity of 3%, using the neural network trained with cluster

spatial information yields an efficiency that doubles the one by using the cut-based selec-

tion. Furthermore, adding the clustering information into the neural network increases the

efficiency relatively by about 20% to 0.98. The three differently trained neural networks

are compared exclusively for doublets in different η and pT regions. The η and pT of each

doublet are obtained from a helix fit of the doublet assuming the doublet starts from the

origin. The helix fit is implemented with the conformal mapping method [29]. Figure 11

shows the comparison of the doublet purity for a given doublet efficiency of 97% for the

three doublet neural networks. For low-pT doublets, the clustering information is as im-

portant as the spatial information in the central η region and becomes more important in

the high η region. For all kinematic regions, combining the clustering information with the

spatial information significantly boosts the doublet purity at this high doublet efficiency

working point. Finally, the output from doublet network can be used to construct triplet

clusters as described in the next section.

3.3 Cluster Triplets

Triplets are composed of three hits with each coming from one of the three consecutive

innermost layers4. As with the doublet case, the triplet neural network was trained to

separate true triplets from fake triplets.

As shown in the previous section, the seeding performance depends strongly on the

seed kinematic properties. Cluster triplets are sorted into pT and η bins using the same

helical fit, only now with three instead of two points. For real triplets, the true momentum

is known, but to directly compare with fake triplets, the same reconstruction algorithm is

used in both cases. Due to the large number of potential fake triplets, only a fraction of

fake triplets from one event are used for training. Specifically, true triplets from about 1000

events are used for the signal and about 0.2% of the possible fake triplets from one event are

3|∆φ/∆r| < 0.0006 rad/mm and |z0| < 100 mm.
4In practice, one could allow for gaps, but we consider the consecutive case for simplicity.
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Figure 10. Doublet efficiency versus doublet purity for different trained doublet neural networks

and the cut-based doublet selection. The definition of doublet efficiency and purity can be found

in the text.

used for the background. This results in approximately balanced classes for the training;

for the final metrics, event weights are applied to reproduce the natural abundance of each

class.

As with the doublets, three sets of features are used: ‘spatial’, ‘shape’, and ‘combined’.

Each set of features are calculated from the same collection of three hits taken from three

consecutive layers, with one hit coming from each layer. A spatial triplet is a group of

twelve numbers: the first six entries are calculated by the differences in spatial coordinates

of two hits on the first two consecutive layers whereas the second six entries are obtained in

the same process but with two hits on the second two consecutive layers. Figure 12 shows

normalized histograms of each one of the first six entries of a spatial triplet. The features

are the same as the doublet case from the previous section.

The second set of features use only local information about the cluster shape. This

information is summarized using the length of the clusters along the v direction (nch1)

in units of number of pixels. Other features of the cluster shapes may be useful, but

these features already contain significantly useful information. The combination of the

spatial and shape features gives 15 numbers for the ‘combined’ feature set. Each feature

set is processed by a neural network of the same architecture. These neural networks are

composed of four layers with [128, 64, 32, 1] neurons and are trained with the binary

cross entropy loss function. There are a large number of fake triplets that can be easily

eliminated and make it difficult for the triplet network to learn. In order to improve the

training efficacy, we first apply a threshold on a doublet network. In particular, we set a

threshold on the doublet network so that we keep 99% of the true doublets for each feature

set.
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Figure 11. Comparison of the purity of the selected doublets for a given signal efficiency of

97% in different η and pT bins of the doublet candidates for the same neural network architecture

trained with three different sets of input variables: only the hit locations in blue, only the cluster

shape information in orange and the combination of the two in green. The gray band indicates the

statistical uncertainty.

Neural networks trained using the three different feature sets are compared in Fig. 13.

For the evaluation of the purity and efficiency, weights are applied to correct the number

of true and fake triplets to match their expected natural abundance. The cluster informa-

tion alone is not very effective at eliminating fake triplets, but the additional information

significantly improves the efficiency for a fixed purity when combined with the cluster hit

coordinates. For example, at a purity of 30%, the efficiency increases from about 20% to

nearly 90%. The jaggedness is a result of the limited statistics.

A differential perspective of the three networks is presented in Fig. 14, grouping the

results in bins of seed pT and η. For the fixed efficiency of 97%, the combined feature set

has the best purity except in three bins where the purity is statistically consistent with

unity. For each pT bin, all three triplet neural networks perform better at higher |η| than

at lower |η| because the cluster lengths are longer and so the shape information is more

useful. Overall, the purity from networks trained only using cluster information is very low

(10−7−10−5), but when combined with spatial information, the purity is everywhere above

1% and in some cases is statistically consistent with 100%. This improvement in the purity

of triplet seeds should allow for a drastic improvement in overall track reconstruction time.
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Figure 12. A subset of the spatial triplet features with all the parameters calculated from the first

two consecutive layers. Solid line for true signal and dotted line for fake background. Each feature

is standardized to have zero mean and unit variance and thus are dimensionless.
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Figure 13. Efficiency versus purity for the three neural networks. Blue for the spatial features

alone, orange for the shape features alone, and green for the combined features. At a fixed efficiency,

the greater the purity the better the performance.
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Figure 14. Comparison of the purity of the selected triplets for a given signal efficiency cut at

97% in different η and pT bins. Blue for the spatial feature alone, orange for the cluster feature

alone, and green for the combined feature. The error bars represent the statistical uncertainty.

High η bins in the range of [2.1, 3] are not included due to the limited number of triplets passing

the selection.

4 Conclusions and Outlook

This paper has presented a series of studies that show how local pixel cluster shape in-

formation can be useful for performing track cluster seeding. The additional information

is useful when considering single clusters, pairs of clusters, as well as triplets of clusters.

For single pixel clusters, shape information is used to estimate the direction of the charged

particle. This vector estimate can be used to significantly reduce the number of hits in

subsequent layers that need to be considered when building doublets and triplets. As ex-

pected, this information is most useful when the pixel cluster is composed of more than one

row in the z direction. Compared to using spatial information alone, the combined infor-

mation reduces the number of hits inside a cone around the predicted trajectory by about

a factor of ten. For pairs of pixel clusters, one can use their relative orientation combined

with the local cluster shapes to reject fake doublets that are not from a single charged

particle. The expected gains depend on momentum of the particles. For example, for a

signal efficiency of 97%, the purity increases from about 0.5-1% to 2-5% at pT < 500 MeV

and from about 3% to 6-10% for pT > 1 GeV. There are also significant improvements for

triplets of pixel clusters, with the most significant improvements projected to be at low pT
and at high |η| where many order of magnitude improvement in purity is possible at a fixed

efficiency. Future studies could combine the approaches designed for single clusters, pairs

of clusters, and triplets of clusters to further optimize the classification and computational

performance.

There are a variety of extensions that would be interesting to pursue in the future. For

example, a direct comparison between the new approaches and traditional seeding algo-

rithms would be an important step to understand the gains in practice. The spatial baseline

shown here uses all of the same information as traditional algorithms, but is expected to
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be better because it already uses a neural network to optimally process the hit positions.

With innovations in experiment-agnostic tools like Acts, a direct comparison may be pos-

sible in the near future and even larger gains than those shown here are expected. Beyond

comparing to traditional methods, it would also be interesting to extend the approaches

here to include even more information (e.g. pixel cluster charge and precision timing). It

would also be interesting to apply these techniques to long-lived particles (LLPs). The

single cluster NN trained only on shape information is insensitive to the origin of the track.

On the other hand, all the other networks studied use information about the track origin

and an extension to LLPs would require more study, with an appropriate data set. Inno-

vations in deploying neural networks on accelerators like FPGAs [30] could also make the

implementation of these seeding algorithms fast enough to fit into trigger time budgets.

These innovations and more may significantly improve track seeding for the HL-LHC era

and beyond.
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